首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18322篇
  免费   1556篇
  国内免费   1370篇
  2024年   26篇
  2023年   347篇
  2022年   438篇
  2021年   742篇
  2020年   766篇
  2019年   895篇
  2018年   778篇
  2017年   639篇
  2016年   702篇
  2015年   749篇
  2014年   1027篇
  2013年   1385篇
  2012年   727篇
  2011年   838篇
  2010年   593篇
  2009年   820篇
  2008年   803篇
  2007年   912篇
  2006年   813篇
  2005年   719篇
  2004年   666篇
  2003年   636篇
  2002年   551篇
  2001年   468篇
  2000年   407篇
  1999年   383篇
  1998年   364篇
  1997年   305篇
  1996年   288篇
  1995年   260篇
  1994年   250篇
  1993年   232篇
  1992年   210篇
  1991年   179篇
  1990年   169篇
  1989年   147篇
  1988年   127篇
  1987年   124篇
  1986年   122篇
  1985年   141篇
  1984年   104篇
  1983年   59篇
  1982年   81篇
  1981年   74篇
  1980年   41篇
  1979年   49篇
  1978年   28篇
  1977年   20篇
  1975年   15篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Objective: Adiponectin influences insulin sensitivity (SI) and fat oxidation. Little is known about changes in adiponectin with changes in the fat content of eucaloric diets. We hypothesized that dietary fat content may influence adiponectin according to an individual's SI. Research Methods and Procedures: We measured changes in adiponectin, insulin, glucose, and leptin in response to high‐fat (HF) and low‐fat (LF) eucaloric diets in lean (n = 10) and obese (n = 11) subjects. Obese subjects were further subdivided in relation to a priori SI. Results: We found significantly higher insulin, glucose, and leptin and lower adiponectin in obese vs. lean subjects during both HF and LF. The mean group values of these measurements, including adiponectin (lean, HF 21.9 ± 9.8; LF, 20.8 ± 6.6; obese, HF 10.0 ± 3.3; LF, 9.5 ± 2.3 ng/mL; mean ± SD), did not significantly change between HF and LF diets. However, within the obese group, the insulin‐sensitive subjects had significantly higher adiponectin during HF than did the insulin‐resistant subjects. Additionally, the change in adiponectin from LF to HF diet correlated positively with the obese subjects’ baseline SI. Discussion: Although in lean and obese women, group mean values for adiponectin did not change significantly with a change in fat content of a eucaloric diet, a priori measured SI in obese subjects predicted an increase in adiponectin during the HF diet; this may be a mechanism that preserves SI in an already obese group.  相似文献   
102.
103.
The drug resistance of CENUs induced by O6-alkylguanine-DNA alkyltransferase (AGT), which repairs the O6-alkylated guanine and subsequently inhibits the formation of dG–dC cross-links, hinders the application of CENU chemotherapies. Therefore, the discovery of CENU analogs with AGT inhibiting activity is a promising approach leading to novel CENU chemotherapies with high therapeutic index. In this study, a new combi-nitrosourea prodrug 3-(3-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)-1-(2-chloroethyl)-1-nitrosourea (6), designed to release a DNA cross-linking agent and an inhibitor of AGT, was synthesized and evaluated for its antitumor activity and ability to induce DNA interstrand cross-links (ICLs). The results indicated that 6 exhibited higher cytotoxicity against mer+ glioma cells compared with ACNU, BCNU, and their respective combinations with O6-benzylguanine (O6-BG). Quantifications of dG–dC cross-links induced by 6 were performed using HPLC–ESI-MS/MS. Higher levels of dG–dC cross-link were observed in 6-treated human glioma SF763 cells (mer+), whereas lower levels of dG–dC cross-link were observed in 6-treated calf thymus DNA, when compared with the groups treated with BCNU and ACNU. The results suggested that the superiority of 6 might result from the AGT inhibitory moiety, which specifically functions in cells with AGT activity. Molecular docking studies indicated that five hydrogen bonds were formed between the O6-BG analogs released from 6 and the five residues in the active pocket of AGT, which provided a reasonable explanation for the higher AGT-inhibitory activity of 6 than O6-BG.  相似文献   
104.
Legionella pneumophila is an aerobic, Gram-negative bacterium of the genus Legionella, which constitutes the major causative agent of Legionnaires’ disease. Recently a nucleoside triphosphate diphosphohydrolase (NTPDase) from L. pneumophila was identified and termed Lp1NTPDase; it was found to be a structural and functional homolog of mammalian NTPDases catalyzing the hydrolysis of ATP to ADP and ADP to AMP. Its activity is believed to contribute to the virulence of Legionella pneumophila. Therefore Lp1NTPDase inhibitors are considered as novel antibacterial drugs. However, only weakly potent compounds are available so far. In the present study, a capillary electrophoresis (CE)-based enzyme assay for monitoring the Lp1NTPDase activity was established. The enzymatic reaction was performed in a test tube followed by separation of substrate and products by CE and subsequent quantification by UV analysis. After kinetic characterization of the enzyme, a series of 1-amino-4-ar(alk)ylamino-2-sulfoanthraquinone derivatives structurally related to the anthraquinone dye Reactive Blue 2, a non-selective ecto-NTPDase inhibitor, was investigated for inhibitory activity on Lp1NTPDase using the CE-based enzyme assay. Derivatives bearing a large lipophilic substituent (e.g., fused aromatic rings) in the 4-position of the 1-amino-2-sulfoanthraquinone showed the highest inhibitory activity. Compounds with IC50 values in the low micromolar range were identified. The most potent inhibitor was 1-amino-4-[phenanthrene-9-yl-amino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (28, PSB-16131), with an IC50-value of 4.24 μM. It represents the most potent Lp1NTPDase inhibitor described to date. These findings may serve as a starting point for further optimization. Lp1NTPDase inhibition provides a novel approach for the (immuno)therapy of Legionella infections.  相似文献   
105.
Salmonella enterica serovar Typhimurium is a Gram-negative bacterium that has a significant impact on both human and animal health. It is one of the most common food-borne pathogens responsible for a self-limiting gastroenteritis in humans and a similar disease in pigs, cattle and chickens. In contrast, intravenous challenge with S. Typhimurium provides a valuable model for systemic infection, often causing a typhoid-like infection, with bacterial replication resulting in the destruction of the spleen and liver of infected animals. Resistance to systemic salmonellosis in chickens is partly genetically determined, with bacterial numbers at systemic sites in resistant lines being up to 1000-fold fewer than in susceptible lines. Identification of genes contributing to disease resistance will enable genetic selection of resistant lines that will reduce Salmonella levels in poultry flocks. We previously identified a novel resistance locus on Chromosome 5, designated SAL1 . Through the availability of high-density SNP panels in the chicken, combined with advanced back-crossing of the resistant and susceptible lines, we sought to refine the SAL1 locus and identify potential positional candidate genes. Using a 6th generation backcross mapping population, we have confirmed and refined the SAL1 locus as lying between 54.0 and 54.8 Mb on the long arm of Chromosome 5 ( F  = 8.72, P  = 0.00475). This region spans 14 genes, including two very striking functional candidates; CD27-binding protein ( Siva ) and the RAC -alpha serine/threonine protein kinase homolog , AKT1 ( protein kinase B , PKB ).  相似文献   
106.
The evolutionary response of plant populations to selection for increased defense may be constrained by costs of defense. The purpose of this study was to investigate such constraints on the evolution of defense due to a cost of defense manifested as a trade-off between defense and tolerance. Variation in the response to artificial damage (tolerance) among lines of Brassica rapa that had been artificially selected for foliar glucosinolate content (defense) was examined. Leaf area was removed from replicates of three selection lines (high glucosinolates, control, and low glucosinolates) at three damage levels (0%, 20%, and 60% damage). An external cost of defense would result in a statistically significant selection line by damage treatment interaction, with those selected for high defense expressing less tolerance than those selected for low defense. Damage treatment had a significant overall effect on estimated total fitness, with fitness declining with increasing damage level. Further, selection line also had a significant overall effect on estimated total fitness, with low-defense selection lines having higher fitness compared to both control and high-defense selection lines. More importantly, a cost of defense in terms of tolerance was demonstrated by a significant selection line-by-damage treatment interaction. This interaction was in the direction to demonstrate a genetic trade-off between defense and tolerance, with low-defense selection lines decreasing estimated total fitness in response to damage less than both control and high-defense selection lines. Variation in tolerance among selection lines was due to the greater ability of low-defense lines to maintain fruit and seed production despite the presence of damage. In terms of tolerance, this cost of glucosinolate production in B. rapa could constrain the evolution of increased defense and, in so doing, maintain individuals within the population that are poorly defended yet tolerant.  相似文献   
107.
108.
109.
110.
The amount of genetic variation for resistance to foot rot caused by Pseudocercosporella herpotrichoides, Fusarium spp., and Microdochium nivale and for resistance to head blight caused by Fusarium culmorum are important parameters when estimating selection gain from recurrent selection in winter rye. One-hundred and eighty-six full-sib families of the selfincompatible population variety Halo, representing the Petkus gene pool, were tested for foot-rot resistance at five German location-year combinations (environments) and for head-blight resistance in three environments with artificial inoculation in all but one environment. Foot-rot rating was based on 25 stems per plot scored individually on a 1–9 scale. Head-blight resistance was plotwise scored on a 1–9 scale and, additionally, grain-weight per spike was measured relative to the non-inoculated control plots. Significant estimates of genotypic variance and medium-sized heritabilities (h 2=0.51–0.69) were observed in the combined analyses for all resistance traits. In four out of five environments, the amount of genetic variance was substantially smaller for foot-rot than for head-blight rating. Considerable environmental effects and significant genotype-environment interactions were found for both foot-rot and head-blight resistance. Coefficients of error-corrected correlation among environments were considerably closer than phenotypic correlations. No significant association was found between the resistances to both diseases (r=-0.20 to 0.17). In conclusion, intra-population improvement by recurrent selection should lead to substantial higher foot-rot and head-blight resistances due to significant quantitative genetic variation within Halo. Selection should be carried out in several environments. Lack of correlation between foot-rot and head-blight resistance requires separate infection tests for improving both resistances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号